$[Cp_4Fe_4(E_2)_2]$ Clusters with Triangulated Dodecahedral Fe_4E_4 Skeletons $(E = P, As)^{\frac{1}{2}}$

Otto J. Scherer*, Gunther Kemény, and Gotthelf Wolmershäuser^[‡]

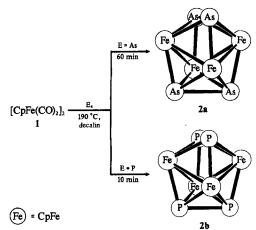
Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany

Received June 16, 1995

Key Words: P2, As2, P2S2, and P2Se2 ligands / Iron complexes / Triangulated dodecahedra

The thermolysis of $[CpFe(CO)_2]_2$ (1) and P_4 or As_4 affords the iron clusters $[Cp_4Fe_4(E_2)_2]$, E = As (2a), P (2b), the Fe_4E_4 skeleton of which consists of a triangulated dodecahedron. S_8 and gray Se oxidize the P_2 ligands of 2b with formation

of $[Cp_4Fe_4(P_2X_2)_2]$, X = S (3a), Se (3b), complexes with the hitherto unknown P_2X_2 ligands. 2a, b and 3a, b have been characterized by X-ray crystallography.

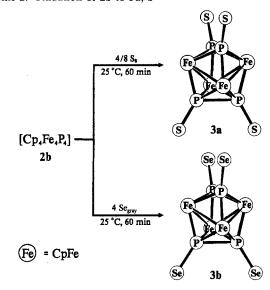

Among the P_n and As_n ligands the P_2 and As_2 building blocks occupy a key position^[1]. Thus, for example, P_2 could recently be incorporated into a tantalum trinuclear complex^[2]; furthermore, two P_2 ligands could be connected to a P_4 chain within the coordination sphere of cobalt^[3].

Concerning the 8-corner polyhedra, there are several examples in the coordination chemistry (ML_8 , $M(\widehat{LL})_4$ etc.) where the ligand sphere forms as a polyhedron a triangulated dodecahedron^[4]. "Empty" polyhedra of this structural type are very rare and have been characterized by X-ray structural analysis only for molecules possessing an A_8 , A_7B , A_6B_2 , and A_4B_4 skeleton (cf. Table 3).

Synthesis of Clusters $[Cp_4Fe_4(E_2)_2]$, E = As (2a), P (2b)

The thermolysis of $[CpFe(CO_2)_2]_2$ (1) with As₄ or P₄, gives in satisfactory and moderate yield the iron clusters **2a** and **2b** (Scheme 1) which contain two μ_4 - $\eta^{2:2:1:1}$ ligands As₂ and P₂, respectively. Both complexes can be handled in air for a short period. They are poorly soluble in benzene, but

Scheme 1. Synthesis of Fe Clusters 2a, b


^[*] Crystal structural analyses.

they dissolve easily in dichloromethane. In solution, 2 decomposes on exposure to air.

Oxidation of P_2 to P_2X_2 Ligands (X = S, Se) in the Case of $[Cp_4Fe_4(P_2)_2]$ (2b)

The two P_2 fragments in 2b may be oxidized even at room temperature with S_8 and gray selenium to the ligands P_2X_2 (X = S, Se) (Scheme 2) which, to our knowledge, are unknown. For these ligands, the structural type I, among others can be discussed.

Scheme 2. Oxidation of 2b to 3a, b

Ab initio calculations on different uncomplexed (free) P_2X_2 isomers (X = O, S, Se) revealed that I is energetically very unfavourable^[5].

$$|\overline{X}_{\underbrace{P-P}}\overline{X}|$$

The iron clusters 3a, b are sparingly soluble in benzene but dissolve well in dichloromethane. They are air-stable as solids.

Discussion of the Molecular Structures of 2 and 3

Molecular structures in the crystal are compiled in Figures 1-3, selected bond lengths and angles in Table 1 and crystallographic data in Table 2.

Table 1. Selected bond lengths $[\mathring{A}]$ and angles $[^{\circ}]$ of the complexes 2a, b and 3a, b

	$[Cp_4Fe_4(E_2)_2]$	$[Cp_4Fe_4(E_2)_2]$	$[Cp_4Fe_4(E_2X_2)_2]$	$[\operatorname{Cp_4Fe_4}(\operatorname{E_2X_2})_2]$
	2a (E = As)	2b (E = P)	3a $(E = P, X = S)$ [a]	3b (E = P, X = Se) [a]
E1-E2	2.539(2)	2.310(4)	2.374(8)	2.399(9)
E3-E4	2.540(2)	2.302(4)	2.361(7)	2.376(9)
average	2.54	2.31	2.37	2.39
Fel-E2	2.303(2)	2.193(3)	2.155(6)	2.162(8)
Fe2-E3	2.298(2)	2.195(3)	2.171(6)	2.166(8)
Fe3-E1	2.287(2)	2.199(3)	2.160(7)	2.184(7)
Fe4-E4	2.297(2)	2.192(3)	2.164(6)	2.166(7)
average	2.30	2.195	2.16	2.17
Fe1-E3	2.381(2)	2.267(3)	2.251(5)	2.215(7)
Fel-E4	2.378(2)	2.259(3)	2.224(6)	2.222(7)
Fe2-E1	2.383(2)	2.268(4)	2.227(6)	2.226(7)
Fe2-E2	2.376(2)	2.259(3)	2.240(5)	2.218(7)
Fe3-E3	2.379(2)	2.261(3)	2.236(6)	2.239(7)
Fe3-E4	2.384(2)	2.257(3)	2.213(5)	2.237(8)
Fe4-El	2.379(2)	2.261(3)	2.221(6)	2.247(8)
Fe4-E2	2.376(2)	2.258(3)	2.217(6)	2.255(7)
average	2.38	2.26	2.23	2.23
Fel-Fe2	2.768(2)	2.659(2)	2.713(4)	2.713(5)
Fe2-Fe3	2.750(3)	2.662(3)	2.730(4)	2.714(5)
Fe3-Fe4	2.736(2)	2.667(2)	2.721(4)	2.737(5)
Fe4-Fe1	2.758(2)	2.660(3)	2.736(4)	2.726(5)
average	2.75	2.66	2.725	2.72
Fe4-Fe1-Fe2	78,02(6)	78.90(6)	77.1(1)	77.2(1)
Fe3-Fe2-Fe1	78.20(5)	79.08(6)	77.5(1)	77.5(1)
Fe4-Fe3-Fe2	78.70(7)	78.72(6)	77.1(1)	77.0(1)
Fe3-Fe4-Fe1	78.60(7)	78.97(5)	77.3(1)	76.8(1)
average	78.4	78.9	77.3	77.1
E2-E1-Fe3	101.43(7)	104.05(14)	103.9(3)	103.0(3)
E1-E2-Fe1	102.20(7)	104.35(14)	103.8(3)	103.5(3)
E4-E3-Fe2	102.07(7)	103.89(13)	102.8(3)	103.2(3)
E3-E4-Fe4	101.49(7)	104.56(13)	104.9(3)	103.9(3)
average	101.8	104.2	103.8	103.4

[a] P1-S1 1.965(9), P2-S2 1.944(9), P3-S3 1.920(9), P4-S4 1.965(8), average 1.95. P1-Se1 2.096(7), P2-Se2 2.089(7), P3-Se3 2.103(7), P4-Se4 2.115(7), average 2.10.

Table 2. Crystallographic data for 2a, b and 3a, b

	2a	2b	3a	3b
Formula	C ₂₀ H ₂₀ As ₄ Fe ₄	C ₂₀ H ₂₀ Fe ₄ P ₄ × 1/3 CH ₂ Cl ₂	C ₂₀ H ₂₀ Fe ₄ P ₄ S ₄ × 1 CH ₂ Cl ₂	C ₂₀ H ₂₀ Fe ₄ P ₄ Se ₂ × 1 CH ₂ Cl ₂
Mol. mass	783.5	636.0	820.8	1008.4
Crystal size [mm]	0.1×0.22×0.22	0.12×0.17×0.3	0.25×0.13×0.1	0.27×0.07×0.07
Crystal system	orthorhombic	rhombohedral	monoclinic	monoclinic
Space group	Pbca	R3	P2 ₁ /c	$P2_1/n$
a [Å]	13.330(3)	14.268(2)	13.427(2)	9.710(2)
b [Å]	17.650(4)	a=b=c	13.856(2)	20.293(4)
c [Å]	18.050(4)	$\alpha = \beta = \gamma$	15.174(2)	15,206(3)
β [°]		114.67(1)	91.85(1)	90.36(3)
$V[\mathring{A}^3]$	4247(2)	1673.4(4)	2822(1)	2996(1)
z i	8	3	4	4
$d_{\text{calcd}} [g \cdot \text{cm}^{-3}]$	2.451	1.893	1.880	2.186
Measured reflections	3157	6797	8025	6669
Independent reflections	2784	4266	6478	5278
Observed reflections			2887	1885
$[I > 2.5 \sigma(I)]$				
2Θ range [°]	2.22-22.52	2.25-25.91	1.52-27.51	1.67-25.01
Refined parameters Diffractometer [a]	251	233	211	211
<i>R</i> 1	0.0952 [b]	0.1119 [b]	0.096 [0]	0.073 lcl
wR2	0.0993 [b]	0. 1203 [b]	0.119 [c]	0.084 [c]
Residual electron density [e · Å-3]	1.41	0.54	1.37	1.04
μ [mm-1]	8.87	2.92	2.74	7.16
Transmission				
min.	0.27	0.46	0.47	0.14
max.	0.39	0.62	0.73	0.38

[a] Measuring temperature 298 K, Mo- K_{α} , Enraf-Nonius-CAD-4 for 2b, Siemens-P4 for 2a, 3a, b. — [b] All data, refinement according to F^2 . — [c] R values for observed reflections, refinement according to F.

In all four clusters, the triangulated dodecahedral skeleton is formally formed by two orthogonally inserted trapezoids (Fe3, E1, E2, Fe1 and Fe2, E3, E4, Fe4) which, on

Figure 1. X-ray crystal structure of [(CpFe)₄(As₂)₂] (2a); only one Cp ligand is shown in 2a and 3a; the other Cp ligands have been omitted for clarity

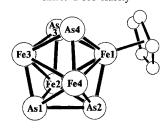


Figure 2. Crystal structure of $[(CpFe)_4(P_2)_2]$ (2b)

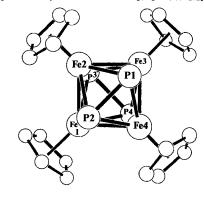
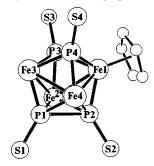



Figure 3. Crystal structure of [(CpFe)₄(P₂S₂)₂] (3a)

the one hand, leads to a compressed Fe₄- and on the other hand to a stretched E₄ "tetrahedron". In the former case, the species contains four bonding Fe-Fe distances (mean values: 2.75 Å for 2a, 2.66 Å for 2b, 2.725 Å or 3a and 2.72 A for 3b) and two non-bonding distances greater than 3.38 Å. Compared with the starting compound 2b (cf. Scheme 2), the oxidation products 3a, b exhibit slightly longer Fe-Fe bonds ($\Delta \approx 0.07$ Å). In bridged iron dinuclear complexes, the Fe-Fe bond lengths were found to be in the range of 2.37-3.05 Å^[6]. In cubane – like [{CpFe}₄(μ_3 -S)₄], the two bonding Fe-Fe distances are 2.65 Å^[7]; oxidation of this cluster to the dication [Cp₄Fe₄S₄]²⁺ results in the formation of two additional Fe-Fe bonds and an elongation of the bond length to 2.83 Å^[8]. The E₄ "tetrahedron" exhibits four non-bonding E-E distances greater than 3.37 Å and two bonding ones. The mean values are: for 2a (E = As) 2.54, for 2b (E = P) 2.31, for 3a (E = P) 2.37, and for 3b (E = P) 2.39 Å, bond lengths that are known for arsenic^[9] and phosphorus compounds^[10]. In [Cp₄Co₄P₄], the strongly distorted Co₄P₄ cubane skeleton

 $[Cp_4Fe_4(E_2)_2]$ Clusters

contains 4 shorter $P \cdot \cdot \cdot P$ distances with an average of 2.57 $\mathring{A}^{[11]}$.

In the four clusters, the Fe-E bonds exhibit the four shorter distances required for a triangulated dodecahedron (18 edges: $12 \times \text{Fe-E}$, $4 \times \text{Fe-Fe}$, $2 \times \text{E-E}$), i.e. mean values: 2.30 for 2a (E = As), 2.195 for 2b (E = P), 2.16 for 3a (E = P), and 2.17 Å for 3b (E = P), likewise eight longer distances are required (average: 2.38 for 2a, E = As, as well as 2.26, 2.23, and 2.23 Å for 2b and 3a, b, (E = P). Both sets differ by approximately 3% (Table 1).

In $[(\mu_3\text{-As})_2\{\text{Fe(CO})_3\}_3]$, which has a trigonal-bipyramidal As_2Fe_3 skeleton, the Fe–As bond lengths are 2.331(3) to 2.376(3) Å^[12]; the corresponding Fe–P distances in $[(\mu_4\text{-P})_2\{\text{Fe(CO})_3\}_3\{\text{Mn(CO})_2\text{Cp}\}_2]$ are 2.241(9) to 2.317(9) Å^[13]

The four atoms of the P_2X_2 ligands of $\bf 3a, b$ lie almost in a plane. The torsion angles are as follows: $X2-P2-P1-X1=4.5^{\circ}$ for $\bf 3a$ (X=S) and 0.4° for $\bf 3b$ (X=Se); $X3-P3-P4-X4=0.5^{\circ}$ for $\bf 3a$ and 1.0° for $\bf 3b$). The mean values of α for the units $\bf X$ differ only

slightly in the case of $\bf 3a$ (X = S, α = 120.9°) and $\bf 3b$ (X = Se, α = 122.4°). $\bar{d}(P=S)$ and $\bar{d}(P=Se)$ are in the typical double bond range with 1.95 Å ($\bf 3a$) and 2.10 Å ($\bf 3b$). This was also found for $\bf P_4S_5$ (1.94 Å^[14]) and $\bf P_4S_6$ (2.12 Å^[15]). A comparison of the $\bf ^1J(PSe)$ and $\bf ^2J(PSe)$ coupling constants of $\bf 3b$ with data found in the literature^[16] indicates that the new $\bf P_2Se_2$ ligand is not easily classified.

A slight shortening of the Fe-Cp(cent.) distance (mean values: 2a, b: 1.74 Å; 3a, b: 1.72, 1.71 Å) is observed on going from 2a, b to 3a, b.

Table 3. Examples of molecules with triangulated dodecahedral skeletal structure characterized by X-ray structural analysis and NMR data of clusters 2a, b and 3a, b

Molecule	SEP	Structure type [a]	atoms in	ivity of the the skeleton olyhedron [b]	¹ H NMR [c]	31 _{P NMR} [c]	Ref
B ₈ Cl ₈ (4)	8	n	4 x B	4 x B			[17]
[(CpCo) ₄ B ₄ H ₄] (5)	8	n	4 x B	4 x Co			[18]
[(CpFe)4As4] (2a)	8	n	4 x As	4 x Fe	4.11 (s, 20 H)		this
[(CpFe) ₄ P ₄] (2b)	8	n	4 x P	4 x Fe	4.29 (s, 20 H)	848 (s, 4 P)	work
[(CpFe)4(P2S2)2] (3a)	8	n	4 x P	4 x Fe	4.40 (s, 20 H)	495 (s, 4 P)	this
[(CpFe)4(P2Se2)2] (3b)	8	n	4 x P	4 x Fe	4.38 (s, 20 H)	477 (s, 4 P) [d]	work
$[B_8H_8]^{2-}(6)$	9	n + 1	4 x B	4 x B			[19]
[CB ₇ H ₇ 1] ⁻ (7)	9	n + 1	3 x B	4 x B			
			1 x C				[20]
$[C_2B_6H_6(CH_3)_2]$ (8)	9	n+1	2 x B	4 x B			
7			2 x C				[21]
[(CpNi)4B4H4] (9)	10	n + 2	4 x Ni	4 x B			[22]
[(iPr3PCu)4Te4] (10)	10	n+2	4 x Te	4 x Cu			[23]

SEP = skeletal electron pairs. - [a] According to the Wade-Mingos electron counting rules[²⁴]: n = hypercloso[²⁵], n + 1 = closo, n + 2 = nido, - [b] Terminal ligands not considered. - [c] In CHCl₃. - [d] $^{1}J(^{3}P^{77}Se) = -596$, $^{2}J(PSe) = \pm 82$ Hz.

Figure 4. Triangulated dodecahedron with atom connectivities

Comparative Studies of Molecules Containing a Triangulated Dodecahedral Skeleton

Application of the Wade-Mingos electron counting rules^[24] to the molecules listed in Table 3 leads to the expected (n + 1)-closo structural type of a triangulated dodecahedron only for the boron-rich examples $B_8H_8^{2-}$ (6)[19], $[CB_7H_7I]^-$ (7)^[20], and $[C_2B_6H_6-1,7-(CH_3)_2]$ (8)^[21]. The number of electrons available for the skeleton from single atoms and for fragments decreases as follows: four for Te (complex 10)^[23]; three for CpNi (complex 9)^[22], P and As (complexes 2a, b and 3a, b, this work) as well as CH and CR (complexes 7 and 8); two for BR (complexes 4^[17], 5^[18], 6, 7, and 8) and CpCo (complex 5)[18]; and one for CpFe (complexes 2a, b and 3a, b) and R₃PCu (complex 10)^[23]. Polyhedra containing different skeletal atoms or skeletal complex fragments were characterized by X-ray structural analysis. The results show that the building blocks providing the most skeletal electrons occupy, up to now and without exception, the vertices with connectivity 4 in the triangulated dodecahedron. The more electron-deficient units are located in the vertices with connectivity 5 (see Table 3 and Figure 4). Complexes 5 and 9 were the subject of various theoretical studies^[26] also dealing in detail with the problem of the n, (n + 1) and (n + 2) structural type in the triangulated dodecahedron.

We thank the Fonds der Chemischen Industrie and the Graduiertenkolleg "Phosphorchemie als Bindeglied verschiedener chemischer Disziplinen" for financial support of our work.

Experimental

All experiments were performed under argon in anhydrous solvents. ¹P-, ³¹P-NMR spectra: Bruker AC 200 and AMX 400, FT-IR: Perkin-Elmer 16 PC. Starting materials: [CpFe(CO)₂]₂ (1)^[27], As₄^[28].

 $[Cp_4Fe_4(As_2)_2]$ (2a): To a freshly prepared solution of yellow arsenic, As₄ (ca. 13 mmol), in 200 ml of boiling decalin 1950 mg (5.5 mol) of [CpFe(CO)₂]₂ (1) was added with stirring. After 1 h, the CO bands in the IR spectrum had disappeared. After the mixture was cooled with an ice-bath, the gray arsenic was separated by means of a D3 frit. The solvent was evaporated under oil pump vacuum, the residue dissolved in 60 ml of diethyl ether, then ca. 10 g of Al₂O₃ was added and the mixture dried until it was free-flowing. The mixture was eluted with petroleum ether/diethyl ether (5:1) on a column (35 \times 3 cm, Al₂O₃, activity grade II) to afford a pale yellow first fraction containing ca. 15 mg of FeCp₂ followed by a green fraction of 2a (yield 590 mg, 27%). Elution with petroleum ether/diethyl ether (1:1) furnished 460 mg (24%) of [{CpFe(µ-CO) $_3(\mu_3$ -As)] (11). Complex 2a was recrystallized from pentane/ diethyl ether (2:1). $-C_{20}H_{20}As_4Fe_4$ (783.5): calcd. C 30.66, H 2.57; found C 30.15, H 2.51. - 11: C₁₈H₁₅AsFe₃O₃ (521.8): calcd. C 41.43, H 2.90; found C 41.06, H 3.03. – IR (xylene): v(CO) = 1808 (s), 1760 (m) cm⁻¹. - ¹H NMR (CHCl₃): $\delta = 4.45$ (s, 15H).

 $[Cp_4Fe_4(P_2)_2]$ (2b): To 250 ml of boiling decalin, 1.0 g (8.1 mmol) of P_4 , 0.5 g (1.90 mmol) of $P_{h3}P$ as stabilizer of an intermediate, and 6.0 g (17 mmol) of 1 were added successively with stirring. Then stirring was continued under reflux for 10 min. The mixture turned green but the CO bands of 1 had not yet completely disappeared. Work-up of the mixture was carried out largely as with 2a. Elution with diethyl ether/dichloromethane (1:1 to 1:3)

afforded 800 mg (15%, related to 1) of 2b as a green fraction. From the first fraction a small amount (ca. 20 mg) of FeCp₂ was also isolated. - C₂₀H₂₀Fe₄P₄ (607.7): calcd. C 39.53, H 3.31; found C 39.81, H 3.26.

 $[Cp_4Fe_4(P_2S_2)_2]$ (3a): To a stirred solution of 170 mg (0.28) mmol) of 2b in 50 ml of THF 54 g (0.21 mmol) of S₈ was added at room temperature and the mixture was stirred for 60 min. After the solvent had been evaporated under vacuum, the black residue was washed three times each with 20 ml of n-hexane. Recrystallization (diffusion apparatus) from n-hexane/dichloromethane furnished 190 g (83%, related to 2b) of 3a as green-black crystals. C₂₀H₂₀Fe₄P₄S₄·1 CH₂Cl₂ (820.8): calcd. C 30.73, H 2.69; found C 30.92, H 2.70%.

In the IR spectrum (KBr pellet), we tentatively assign [in accordance with, e.g., free $PS^{[29a]}$ v(P=S) = 729 cm⁻¹, $P_4S_{10}^{[29b]}$ $v(P=S) = 690 \text{ cm}^{-1}$, and $[\{CpFe(CO)_2\}PPh(S)]^{[29c]} v(P=S) = 597$ cm⁻¹] the band at 676 cm⁻¹ (vs) of 3a to v(P=S).

 $[Cp_4Fe_4(P_2Se_2)_2]$ (3b): To a solution of 160 mg (0.26 mmol) of 2b in 30 ml of dichloromethane 80 mg (1.01 mmol) of grey selenium was added at room temp. The mixture was stirred for 60 min during which time it turned red. The solvent was evaporated under vacuum and the residue dissolved in a small amount of CH₂Cl₂. Then 3 g of silica gel (activity grade III) was added and the mixture was dried until it was free-flowing. Elution with diethyl ether/dichloromethane (5:1) on a column (30 \times 3 cm, petroleum ether, silica gel) afforded a red-brown fraction containing 3b which was isolated and recrystallized from dichloromethane. Yield: 190 mg (72%, related to $2b). - C_{20}H_{20}Fe_4P_4Se_4\cdot 1 \ CH_2Cl_2$ (1008.4): calcd. C 25.01, H 2.19; found C 25.03, H 2.22.

In the IR spectrum (KBr pellet) we tentatively assign [in accordance with, e.g., $P_4Se_{10}^{[30]}$, $v(P=Se) = 500 \text{ cm}^{-1}$] the band at 468 cm^{-1} (vs) to v(P=Se).

Notes concerning the crystal structure analyses^[31] of complexes 3a, b: All studied crystals of both compounds exhibited only a very weak diffraction (36 and 44%, respectively, of the independent reflections were considered observed). Moreover, all crystals of 3b exhibited side grows leading to reflections with negative intensities. The carbon atoms of the two structures were only refined isotropically, the hydrogen atoms were not localized and not included in the refinement. Although both structures show no peculiarities concerning their bond lengths and bond angles the latter should not be overinterpreted.

* Dedicated to Professor Herbert Schumann on the occasion of

[2] O. J. Scherer, R. Winter, G. Wolmershäuser, J. Chem. Soc. Chem. Commun. 1993, 313-314.

O. J. Scherer, G. Berg, G. Wolmershäuser, Chem. Ber. 1995, 128, 635-639

[6] P. Chini in The Organic Chemistry of Iron (Eds.: E. A. Koerner

- von Gustorf, F. W. Grewels, I. Fischler), Vol. 2, Academic
- Press, 1981.
 C. H. Wei, G. R. Wilkes, P. M. Treichel, L. F. Dahl, Inorg. Chem. **1966**, 5, 900–905
- Trinh-Toan, B. K. Teo, J. A. Ferguson, T. J. Meyer, L. F. Dahl, Am. Chem. Soc. 1977, 99, 408-416.
- [9] As₄S₄: E. J. Porter, G. M. Sheldrick, J. Chem. Soc., Dalton Trans. 1972, 1347-1349. – [{(C₅Me₄Et)Ru}₃RuAs₉]: O. J. Scherer, C. Blath, G. Heckmann, G. Wolmershäuser, J. Organomet. Chem. 1991, 409, C15-C18. — As₂(SiMes/Bu)₂: M. Driess, R. Janoschek, H. Pritzkow, Angew. Chem. 1992, 104, 449-451; Angew. Chem. Int. Ed. Engl. 1992, 31, 460-462. — [Cp*Fe(µ-ŋ^{5.2}-As₅){Rh(CO)Cp}]: M. Detzel, G. Friedrich, O. J. Scherer, G. Wolmershäuser, Angew. Chem. 1995, 107, 1031
- [10] Fe(μ-η'---Ass)(Rin(Co)Cp_J). Vi. Detect, G. Theorien, G. J. Scherer, G. Wolmershäuser, Angew. Chem. 1995, 107, 1454–1456; Angew. Chem. Int. Ed. Engl. 1995, 34, 1321–1323. [10] [RhCl(η²-P₄)(PPh₃)₂]: A. P. Ginsberg, W. E. Lindsell, K. J. Mc Cullough, C. R. Sprinkle, A. J. Welch, J. Am. Chem. Soc. 1986, 108, 403–416. P₂(BR)₂: P. Kölle, G. Linti, H. Nöth, K. Polborn, J. Organomet. Chem. 1988, 355, 7–18. P₂(SiR₂)₂: M. D. Farte, D. Pauell, P. West, Angew. Chem. 1989. Driess, A. D. Fanta, D. Powell, R. West, Angew. Chem. 1989, 101, 1087–1088; Angew. Chem. Int. Ed. Engl. 1989, 28, 1038–1039. – [Cp*Fe(μ - η ^{5:2}-P₅){Ir(CO)Cp*}]: see η ^{5:2}-As₅, Lit. [9]. – [Cp₂"Co₂P₄{W(CO)₅}_n, n = 1, 2; Lit. [3]. [11] G. L. Simon, L. F. Dahl, J. Am. Chem. Soc. 1973, 95, 2175–2182

[12] L. T. J. Delbaere, L. J. Kruczynski, D. W. Mc Bride, J. Chem. Soc., Dalton Trans. 1973, 307-310.
 [13] H. Lang, G. Huttner, L. Zsolnai, G. Mohr, B. Sigwarth, U. Weber, O. Orama, I. Jibril, J. Organomet. Chem. 1986, 304, 157-179.

[14] S. van Houten, E. H. Wiebenga, Acta Cryst. 1957, 10, 156-160.

[15] G. J. Penney, G. M. Sheldrick, J. Chem. Soc. A 1971, 245-248. [16] H. Duddeck in Progr. Nucl. Magn. Reson. Spectrosc., (eds.: J. W. Emsley, J. Feeney, L. H. Sutcliffe), 1995, 27, 1-323.

[17] G. S. Pawley, Acta Cryst. 1966, 20, 631-638; R. A. Jacobson, W. N. Lipscomb, *J. Chem. Phys.* **1959**, *31*, 605–609. [18] J. R. Pipal, R. N. Grimes, *Inorg. Chem.* **1979**, *18*, 257–263.

[19] L. J. Guggenberger, Inorg. Chem. 1969, 8, 2771-2774; theoretical investigation, for example: L. M. Hoistud, S. Lee, J. Pasternak, J. Am. Chem. Soc. 1992, 114, 4790-4796; D. J. Wales, R. G. A. Bone, ibid. 5399-5406.

[20] T. Jelinek, B. Stibr, J. Plesek, J. D. Kennedy, M. Thornton-Pett, J. Chem. Soc., Dalton Trans. 1995, 431–437.
[21] H. Hart, W. N. Lipscomb, Inorg. Chem. 1968, 7, 1070–1075.

[22] J. R. Bowser, A. Bonny, J. R. Pipal, R. N. Grimes, J. Am. Chem. Soc. 1979, 101, 6229-6236.

D. Fenske, J.-C. Steck, Angew. Chem. 1993, 105, 254-257; Angew. Chem. Int. Ed. Engl. 1993, 32, 238-240.

[24] K. Wade, Adv. Inorg. Chem. Radiochem. 1976, 18, 1-66; D. M. P. Mingos, R. L. Johnston, Struct. Bonding 1987, 68, 29-87.

[25] To the problem hypercloso/isocloso see for example: J. Bould, N. N. Greenwood, J. D. Kennedy, J. Chem. Soc., Dalton Trans. 1990, 1451-1458.

[26] D. N. Cox, D. M. P. Mingos, R. Hoffmann, J. Chem. Soc., Dalton Trans. 1981, 1788-1797; R. B. King, Polyhedron 1982, 1, 32-134; T. Fehlner, J. Organomet. Chem. 1994, 478, 49-55

[27] R. B. King in Organometallic Syntheses, Vol. 1 (eds.: J. J. Eisch, R. B. King), Academic Press, New York, 1965, p. 114.

R. B. Kingly, Academic Press, 1908 1018, 1203, p. 117.

[28] O. J. Scherer, H. Sitzmann, G. Wolmershäuser, J. Organomet. Chem. 1986, 309, 77-86; and references therein.

[29] [29a] Z. Mielke, G. D. Brabson, L. Andrews, J. Phys. Chem. 1991, 95, 75-79. - [29b] E. Steger, H.-D. Blechschmidt, Spectrochim. Acta 1968, 24A, 92-93. - [29c] I.-P. Lorenz, P. Mürschel, W. Pall V. Palloge, Cham. Par. 1905, 128, 413-416. Pohl, K. Polborn, Chem. Ber. 1995, 128, 413-416.
[30] Y. Monteil, H. Vincent, Z. Anorg. Allg. Chem. 1977, 428,

259 - 268

[31] Further details of the crystal-structure determinations may be obtained from Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, on quoting the depository numbers CSD-404189 (2a), -404190 (2b), -404191 (3a), and -404192 (3b), the names of the authors and the journal citation.

[95086]

his 60th birthday.
[1] Recent reviews: [1a] O. J. Scherer, Angew. Chem. 1990, 102, 1137-1155; Angew. Chem. Int. Ed. Engl. 1990, 29, 1104-1122.

- [1b] M. Scheer, E. Herrmann, Z. Chem. 1990, 30, 41-55. [1c] A.-J. Di Maio, A. L. Rheingold, Chem. Rev. 1990, 90, 169 - 190.

^[4] Detailed discussion of coordination number 8 in D. L. Kepert, Inorganic Stereochemistry, Springer, Berlin, 1982, p. 152–177; see also: D. M. P. Mingos, J. E. Mc Grady, A. L. Rohl, Struct. Bonding, Springer, Berlin, 1992, 79, 1-50.
P. v. Ragué-Schleyer, M. Hofmann, unpublished results.